Theory for Fundamental Symmetries, Neutrons, and Neutrinos

J. Engel

December 14, 2022

Our Science

We want to discover new fundamental physics!

Our Science

We want to discover new fundamental physics!

And if we don't discover anything, then we want to rule out some possibilities.

Our Science

We want to discover new fundamental physics!

And if we don't discover anything, then we want to rule out some possibilities.

Doing that almost always requires a theoretical understanding of what that physics might be and how it manifests itself, quantitatively, in the nuclei that we study.

We need a thriving community of talented theorists.

Situation in A Nutshell

Lots of high-profile physics and success stories in the theory program.

But we have some challenges:

- Our problems involve physics at several scales. We need to combine work in phenomenology/EFT, hadronic structure, and nuclear structure (and sometimes atomic physics). Experts in each of these areas must
 - Communicate and collaborate.
 - Be able to interact with neighboring fields: QCD, HEP, AMO ...

Situation in A Nutshell

Lots of high-profile physics and success stories in the theory program.

But we have some challenges:

- Our problems involve physics at several scales. We need to combine work in phenomenology/EFT, hadronic structure, and nuclear structure (and sometimes atomic physics). Experts in each of these areas must
 - Communicate and collaborate.
 - Be able to interact with neighboring fields: QCD, HEP, AMO ...
- We have the same problem as the community at large: We're small and have no national organizational center. And so we have
 - Fragmented research efforts
 - Difficulties getting faculty and staff positions in our field
 - Lack of political influence

Some Successful Recent Initiatives

- Amherst Center for Fundamental Interactions (ACFI)
- DOE Topical Theory Collaborations
 - Recently completed: Double-Beta Decay and Fundamental Symmetries (DBD)
 - Just beginning: Nuclear Theory for New Physics (NTNP)
- NSF Physics Frontier Center: Network for Neutrinos, Nuclear Astrophysics, and Symmetries (N3AS)

Some Successful Recent Initiatives

- Amherst Center for Fundamental Interactions (ACFI)
- DOE Topical Theory Collaborations
 - Recently completed: Double-Beta Decay and Fundamental Symmetries (DBD)
 - Just beginning: Nuclear Theory for New Physics (NTNP)
- NSF Physics Frontier Center: Network for Neutrinos, Nuclear Astrophysics, and Symmetries (N3AS)

These have been great,

- leading to results that would not have been attained otherwise
- seeding a few faculty, training good postdocs and students.

but

- ▶ ACFI and N3AS have fewer resources than lab-based centers, can't provide long-term path to faculty positions.
- The collaborative initiatives expire fairly quickly.

Example: DBD Topical Collaboration 2017-2022

Brought together researchers form EFT, LQCD, and nuclear structure for coordinated research that *would not have happened* otherwise.

Went from almost zero to a comprehensive framework for computing nuclear matrix elements and the first actual calculations.

Example: DBD Topical Collaboration

2017-2022

Brought together researchers form EFT, LQCD, and nuclear structure for coordinated research that *would not have happened* otherwise.

Went from almost zero to a comprehensive framework for computing nuclear matrix elements and the first actual calculations.

But the program is over and though such research is continuing, it's harder to carry out.

Quick Promo: New Topical Collaboration

Asks

- Longer lasting versions of topical collaborations, PFCs, and/or SciDAC programs
- 2. A faculty bridge program

An NSAC subcommittee to address these needs would help.

Could lead to a consortium like NP FRIB Theory Alliance or HEP Neutrino theory Network to

- administer bridge program,
- coordinate workforce development and workshops with hubs, topical centers, PFCs, and the INT.